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Mixed-Integer PDE-Constrained Optimization

A new modeling paradigm

Paradigm shift from forward simulations to
design of complex structures

Design of systems involving
... complex PDE simulations,
... uncertainty quantification,
... and discrete/continuous design parameters

Integrate maths, algorithms, and CS

Shape optimization of cavity for ILC
[Akcelik et al., 2005]
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Applications of MIPDECO

A rich set of DOE application areas

1 Subsurface Design Applications
E.g. remediation of contaminated sites, oil and gas extraction

PDE constraints model subsurface flow
Discrete design parameters model location/operation of wells
Uncertainties model the unknown subsurface

2 Operational planning for nuclear reactors: core-reloading

Neutron transport & fluid-flow equations
Discrete variables model fuel rod arrangement
Imperfect knowledge of fuel ⇒ uncertainties

3 Accelerator design: Maxwell’s equation plus discrete
components, e.g. # arc & wiggler cells

4 Design of nano-materials for ultra-efficient solar cells ... next
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MIPDECO for Design of Solar Cells
Goal: Design nonreciprocal coating: full transmission & absorption

Design meta-material (MM) coating for solar cells

MM atom of given shape is assembled into molecule

Typical crystal (layer of molecules) has 10-20 molecules width

Maxwell’s equation models electromagnetic response

0− 1 variables model orientation of atom on faces of molecule
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MIPDECO for Design of Solar Cells

General form of Maxwell’s equation

∇×H = ∂D
∂t + Je , ∇× E = −∂B

∂t + Jm,
∇ ·D = ρ, ∇ · B = 0,[
D
B

]
=

[
ε χ
ζ µ

] [
E
H

]
+

[
P
M

]
where ε = ε(x) permittivity; µ permeability

Binary variables zijk ∈ {0, 1} model orientation of MM atoms
⇒ construct permittivity and permeability tensors ε(x), µ(x)

ε(x) ' ε̃j ,k =
∑
i∈O

zi ,j ,kεi and
∑
i∈O

zi ,j ,k = 1

where εi is fixed permittivity of orientation i
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Mathematical and Computational Challenges

Applications give rise to MIPDECO under Uncertainty

minimize
y(γ),u,z

F (y(γ), u, z)

subject to g(y(γ), u, z ; γ) = 0, ∀γ ∈ Γ
y(γ) ∈ Y, u ∈ U , z ∈ Zp ∩ S ,

where

y(γ) state variables depending on random variables γ ∈ Γ

u continuous design variables

z integer design variables

g describes PDE and boundary conditions

F (y(γ), u, z) is objective, e.g. maximize power of solar cells
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Challenge I: Combinatorial Explosion

MIPDECOs generate huge search trees [Belotti et al., 2013]

Each node in tree is PDE-constrained optimization

Must take uncertainty into account

{4 angles} × {6 faces} × {10k cubes} = 24k binary variables
Brute-Force Approach: assume billion PDECOs per second
⇒ exascale machine would run longer than age of universe!

Must exploit hot-starts for re-solve ... solve millions of (N)LPs
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Challenge II: New Algorithms & Math

A Simple Approach

{
PICO [Eckstein et al., 2001]

MINOTAUR [Mahajan et al., 2011]

}
+

{
PETSc
Trilinos

}
⇒ failure

Need integrated algorithmic strategy, e.g.

Tree-search techniques based on surrogate models

Integrate multilevel combinatorial with multilevel PDE

Optimization framework guides exploration of uncertainty

Align algorithmic hierarchies with machine/storage hierarchies

... concerted effort worthy of DOE labs

New math challenges

Quality or bounds on surrogate models

What is {0, 1}∞? E.g. function space
for topology optimization
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Integrated Uncertainty Quantification

Sources of Uncertainty

Errors in material properties (ε, µ)

Manufacturing inaccuracies

Numerical/modeling errors

Errors from data measurements

Combine PDECO with stochastic programming for UQ

Design under UQ as two-stage stochastic MIP optimization

First-stage variables are design variables

Second-stage variables are solutions of stochastic PDE

⇒ Block-angular structure, where each block is PDE

Goal: control uncertainty; dimension reduction; adjoint technology
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Toward Billion-Way Concurrency

Worker 1 Worker 2 Worker 3

Back-of-Envelope Computation

Asynchronous tree-search

Linear solvers inside PDEs

UQ block-structure

   1,000 parallel tree−searches

x 10,000 cores per PDE solve

x 100 cores for UQ

billion−way parallelism

Opportunities for Exascale

Tree-search loosely coupled solves with small communication

Readily scales to 1,000 parallel tree-searches [Goux and Leyffer, 2003]

Communicate bounds, new solutions, and sub-trees

Parallel solvers for PDE-constrained optimization

Scalable linear algebra ... up to 150k cores (NEK5000)

Scenario-based decomposition or UQ

Scales with number of scenarios (samples)
Some communication between scenarios

Hierarchy of concurrency ⇒ multiplicative opportunities
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Algorithm-Level Resiliency

Exascale systems likely to have shorter mean-time-to-failure
... check-point-restart no longer an option

Optimization Algorithms can be made resilient

MIP tree-search: only check-point master node

Trust-region or line-search provide algorithmic resilience

Exploit multi-level hierarchy for smart check-pointing

Stochastic programming (UQ) robust to node failures

Resilient linear solves [Bridges et al., 2012]

... exploit resilient algorithm design at all levels of hierarchy
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Summary and Discussion

Mixed-Integer PDE-Constrained Optimization

Design of complex systems with discrete parameters
under uncertainty

Opportunity to tackle new, broader class of design applications

Poses rich set of mathematical, algorithmic, and CS challenges

Math and DOE applications “made for exascale”

Unlikely to tackle problems on smaller systems
Hierarchy of concurrency maps well to exascale systems
Integrates & combines existing DOE tools

... requires concerted & coordinated effort
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